博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Python高级语法之:一篇文章了解yield与Generator生成器
阅读量:6448 次
发布时间:2019-06-23

本文共 3809 字,大约阅读时间需要 12 分钟。

Python高级语法中,由一个yield关键词生成的generator生成器,是精髓中的精髓。它虽然比装饰器、魔法方法更难懂,但是它强大到我们难以想象的地步:小到简单的for loop循环,大到代替多线程做服务器的高并发处理,都可以基于yield来实现。

理解yield:代替return的yield

简单来说,yield是代替return的另一种方案:

  • return就像人只有一辈子,一个函数一旦return,它的生命就结束了
  • yield就像有“第二人生”、“第三人生”甚至轮回转世一样,函数不但能返回值,“重生”以后还能再接着“上辈子”的记忆继续返回值

我的定义:yield在循环中代替return,每次循环返回一次值,而不是全部循环完了才返回值。

yield怎么念?

return我们念“返回xx值”,我建议:yield可以更形象的念为"呕吐出xx值“,每次呕一点。

一般我们进行循环迭代的时候,都必须等待循环结束后才return结果。

数量小的时候还行,但是如果循环次数上百万?上亿?我们要等多久?
如果循环中不涉及I/O还行,但是如果涉及I/O堵塞,一个堵几秒,后边几百万个客户等着呢,银行柜台还能不能下班了?

所以这里肯定是要并行处理的。除了传统的多线程多进程外,我们还可以选择Generator生成器,也就是由yield代替return,每次循环都返回值,而不是全部循环完了才返回结果。

这样做的好处就是——极大的节省了内存。如果用return,那么循环中的所有数据都要不断累计到内存里直到循环结束,这个不友好。

而yield则是一次一次的返回结果,就不会在内存里累加了。所以数据量越大,优势就越明显。

有多明显?如果做一百万的简单数字计算,普通的for loop return会增加300MB+的内存占用!而用yield一次一次返回,增加的内存占用几乎为0MB!

yield的位置

既然yield不是全部循环完了再返回,而是循环中每次都返回,所以位置自然不是在for loop之后,而是在loop之中。

先来看一般的for loop返回:

def square(numbers):    result = []    for n in numbers:        result.append( n**2 )    return result    #在for之外

再来看看yield怎么做:

def square(numbers):    for n in numbers:        yield n**2    #在for之中

可以看到,yield在for loop之中,且函数完全不需要写return返回。

这时候如果你print( square([1,2,3]) )得到的就不是直接的结果,而是一个<generator object>

如果要使用,就必须一次一次的next(...)来获取下一个值:

>>> results = square( [1,2,3] )>>> next( result )1>>> next( result )4>>> next( result )9>>> next( result )ERROR: StopIteration

这个时候更简单的做法是:

for r in results:    print( r )

因为in这个关键词自动在后台为我们调用生成器的next(..)函数

什么是generator生成器?

只要我们在一个函数中用了yield关键字,函数就会返回一个<generator object>生成器对象,两者是相辅相成的。有了这个对象后,我们就可以使用一系列的操作来控制这个循环结果了,比如next(..)获取下一个迭代的结果。

yieldgenerator的关系,简单来说就是一个起因一个结果:只要写上yield, 其所在的函数就立马变成一个<generator object>对象。

xrange:用生成器实现的range

Python中我们使用range()函数生成数列非常常用。而xrange()的使用方法、效果几乎一模一样,唯一不同的就是——xrange()返回的是生成器,而不是直接的结果。

如果数据量大时,xrange()能极大的减小内存占用,带来卓越的性能提升。

当然,几百、几千的数量级,就直接用range好了。

多重yield

有时候我们可能会在一个函数中、或者一个for loop中看到多个yield,这有点不太好理解。

但其实很简单!

一般情况下,我们写的:

for n in [1,2,3]:    yield n**2

实际上它的本质是生成了这个东西:

yield 1**2yield 2**2yield 3**2

也就是说,不用for loop,我们自己手写一个一个的yield,效果也是一样的。

你每次调用一次next(..),就得到一个yield后面的值。然后三个yield的第一个就会被划掉,剩两个。再调用一次,再划掉一个,就剩一个。直到一个都不剩,next(..)就返回异常。

一旦了解这个本质,我们就能理解一个函数里写多个yield是什么意思了。

更深入理解yield:作为暂停符的yield

从多重yield延伸,我们可以开始更进一步了解yield到底做了些什么了。

现在,我们不把yield看作是return的替代品了,而是把它看作是一个suspense暂停符。

即每次程序遇到yield,都会暂停。当你调用next(..)时候,它再resume继续。

比如我们改一下上面的程序:

def func():    yield 1**2    print('Hi, Im A!')    yield 2**2    print('Hi, Im B!')    yield 3**2    print('Hi, Im C!')

然后我们调用这个小函数,来看看yield产生的实际效果是什么:

>>> f = func()>>> f
>>> next( f )1>>> next( f )Hi, Im A!4>>> next( f )Hi, Im B!9>>> next( f )Hi, Im C!ERROR: StopIteration

从这里我们可以看到:

  • 第一次调用生成器的时候,yield之后的打印没有执行。因为程序yield这里暂停了
  • 第二次调用生成器的时候,第一个yield之后的语句执行了,并且再次暂停在第二个yield
  • 第三次调用生成器的时候,卡在了第三个yield。
  • 第四次调用生成器的时候,最后一个yield以下的内容还是执行了,但是因为没有找到第四个yield,所以报错。

所以到了这里,如果我们能理解yield作为暂停符的作用,就可以非常灵活的用起来了。

yield fromsub-generator子生成器

yield from是Python 3.3开始引入的新特性。

它主要作用就是:当我需要在一个生成器函数中使用另一个生成器时,可以用yield from来简化语句。

举例,正常情况下我们可能有这么两个生成器,第二个调用第一个:

def gen1():    yield 11    yield 22    yield 33def gen2():    for g in gen1():        yield g    yield 44    yield 55    yield 66

可以看到,我们在gen2()这个生成器中调用了gen1()的结果,并把每次获取到的结果yield转发出去,当成自己的yield出来的值

我们把这种一个生成器中调用的另一个生成器叫做sub-generator子生成器,而这个子生成器由yield from关键字生成。

由于sub-generator子生成器很常用,所以Python引入了新的语法来简化这个代码:yield from

上面gen2()的代码可以简化为:

def gen2():    yield from gen1()    yield 44    yield 55    yield 66

这样看起来是不是更"pythonic"了呢?:)

所以只要记住:yield from只是把别人呕吐出来的值,直接当成自己的值呕吐出去。

递归+yield能产生什么?

一般我们只是二选一:要不然递归,要不然for循环中yield。有时候yield就可以解决递归的问题,但是有时候光用yield并不能解决,还是要用递归。

那么怎么既用到递归,又用到yield生成器呢?

def func(n):    result = n**2    yield result    if n < 100:        yield from func( result )for x in func(100):    print( x )

上面代码的逻辑是:如果n小于100,那么每次调用next(..)的时候,都得到n的乘方。下次next,会继续对之前的结果进行乘方,直到结果超过100为止。

我们看到代码里利用了yield from子生成器。因为yield出的值不是直接由变量来,而是由“另一个”函数得来了。

转载地址:http://sqlwo.baihongyu.com/

你可能感兴趣的文章
Redis集群中删除/修改节点(master、slave)(实验)
查看>>
memcache数据库和redis数据库的区别(理论)
查看>>
我的友情链接
查看>>
MyBatis+Spring结合
查看>>
shell实例-判断apache是否正常启动
查看>>
SharedPreferences存储复杂对象解决方案
查看>>
Office 365之SkyDrive Pro
查看>>
脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?
查看>>
无缝滚动实现原理分析【公告栏】
查看>>
Java Web 高性能开发
查看>>
redis-cli 命令总结
查看>>
CentOS 4.4双网卡绑定,实现负载均衡
查看>>
GitHub页面使用方法
查看>>
Python爬虫综述(笔记)
查看>>
Scala之柯里化和隐式转换
查看>>
wmic命令
查看>>
Merge and BottomUpSort
查看>>
reids 安装记录
查看>>
获取androdmanifest里面的meta-data
查看>>
Centos 6.3编译安装nagios
查看>>